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Abstract

Gamboa, Carlos Andrés; Valladao, Davi Michel (Advisor).
Partition-based Method for Two-stage Stochastic Linear
Programming Problems with Complete Recourse. Rio de
Janeiro, 2017. 79p. Dissertacao de Mestrado — Departamento de
Engenharia Industrial, Pontificia Universidade Catélica do Rio de
Janeiro.

The hardest part of modelling decision-making problems in the real
world, is the uncertainty associated to realizations of futures events. The
stochastic programming is responsible about this subject; the target is
finding solutions that are feasible for all possible realizations of the unknown
data, optimizing the expected value of some functions of decision variables
and random variables.

The approach most studied is based on Monte Carlo simulation and
the Sample Average Approximation (SAA) method which is a kind of
discretization of expected value, considering a finite set of realizations or
scenarios uniformly distributed.

It is possible to prove that the optimal value and the optimal solution of
the SAA problem converge to their counterparts of the true problem when
the number of scenarios is sufficiently big.

Although that approach is useful, there exist limiting factors about the
computational cost to increase the scenarios number to obtain a better
solution; but the most important fact is that SAA problem is function of
each sample generated, and for that reason is random, which means that
the solution is also uncertain, and to measure its uncertainty it is necessary
consider the replications of SAA problem to estimate the dispersion of the
estimated solution, increasing even more the computational cost.

The purpose of this work is presenting an alternative approach based
on robust optimization techniques and applications of Jensen’s inequality,
to obtain bounds for the optimal solution, partitioning the support of
distribution (without scenarios creation) of unknown data, and taking
advantage of the convexity. At the end of this work the convergence of

the bounding problem and the proposed solution algorithms are analyzed.

Keywords

Robust Optimization; Sample Average Approximation; Stochastic

Programming; Partition-based method.
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Resumo

Gamboa, Carlos Andrés; Valladao, Davi Michel. Método de
Particao para Problemas de Programacgao Linear Es-
tocastica dois Estagios com Recurso Completo. Rio de Ja-
neiro, 2017. 79p. Dissertacao de Mestrado — Departamento de En-
genharia Industrial, Pontificia Universidade Catdlica do Rio de Ja-
neiro.

A parte mais dificil de modelar os problemas de tomada de decisao do
mundo real, é a incerteza associada a realizagao de eventos futuros. A pro-
gramacao estocastica se encarrega desse assunto; o objetivo é achar solugoes
que sejam factiveis para todas as possiveis realizacoes dos dados, otimizando
o valor esperado de algumas funcoes das variaveis de decisao e de incerteza.
A abordagem mais estudada esta baseada em simulagao de Monte Carlo e
o método SAA (Sample Average Approzimation) o qual é uma formulagao
do problema verdadeiro para cada realizagao da data incerta, que pertence
a um conjunto finito de cenarios uniformemente distribuidos.

E possivel provar que o valor 6timo e a solucao 6tima do problema SAA
converge a seus homologos do problema verdadeiro quando o nimero de
cenarios ¢é suficientemente grande.

Embora essa abordagem seja 1til ali existem fatores limitantes sobre o custo
computacional para obter solugoes mais precisas aumentando o nimero de
cenarios; no entanto o fato mais importante é que o problema SAA é funcao
de cada amostra gerada e por essa razao é aleatério, o qual significa que
a sua solucao também é incerta, e para medir essa incerteza é necessario
considerar o numero de replicacoes do problema SAA afim de estimar a
dispersao da solucao, aumentando assim o custo computacional.

O propdsito deste trabalho é apresentar uma abordagem alternativa ba-
seada em um método de particao que permite obter cotas para estimar
deterministicamente a solugao do problema original, com aplicacao da desi-
gualdade de Jensen e de técnicas de otimizagao robusta. No final se analisa

a convergencia dos algoritmos de solugao propostos.

Palavras—chave

Otimizagao Robusta; Método de Cendrios (SAA); Programagao Es-

tocastica; Método de Particao.
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1
Introduction

The two-stage stochastic programming problem is a model that repre-
sents the decision process under uncertainty, where in the first place we have
to take decisions that do not depend on unknow information, and in the second
one, we can wait to know the missing information to take the decisions that
complete the process. This can be expressed mathematically by the following
optimization problem:

Min c'z+ E[Q(z,&)]

TER™ (1_1)
st. Ax=0b, x>0,

where
Q(x,§) = Min ¢y
v (1-2)
st. Tx+Wy=h, y>0,
is known as the recourse function and £ := (q,h, T, W) represents the

unknown data or uncertainty:.

The Sample Average Approximation (SAA) is a statistical method that
considers the creation of scenarios to fit the real distribution of ¢ with a finite
set of realizations. Nevertheless this is an useful technique and natural way
to solve the problem, that kind of discretization of the expected operator
demands a big scenarios number to converge with a high computational cost

and offers a random estimated solution.

In this work we want to propose a partition-based method of the support
of the distribution for a two-stage stochastic linear programming problem, to
get a numerical approximation that converges, in a deterministic way, to the
real solution, as alternative to Sample Average Approximation (SAA) method,
that gives a random estimator for the true solution, without deterministic

bounds.

This method is replicable since the sequential refinement problem of the
partition can be reproduced to get the same result always, which is a very

important property since this allows to adopt a unique policy of invesment
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according to the decision making problem modelled.

Nowadays there exist some numerical techniques that implement bounds
approximations and partition refinements based on convex-concave properties
and dual information of the original problem; those techniques are mencionated
in classic works like (Birge and West, 1986), (Edirisinghe and Ziemba, 1996),
and (Carge and Tind, 1998). More recently in (Song and Luedtke, 2015) an
adaptative partition-based method is considered as relaxation of the original

problem to reduce the computational cost of the sampling method.

By other hand, our partition-based model consider the bounding problem
that results of the Jensen’s inequality application and the robust formulation
of second stage problem (this last inspired by Bertsimas and Sim, 2004),
exploring the convexity of the recourse function. According to this, the goal is
finding the best way to discretize the support of uncertain variable to converge
with the smallest partition size and get a high-quality solution without high

computational cost.

This objective led to construct two algorithms: the Solution Algorithm
with a Random Partition Refinement (SARPR) explore uniformly the distri-
bution of the uncertain data without any additional information. The Solution
Algorithm with Worst-case Partition Refinement (SAWPR) consider extreme
realizations of the uncertain data to identify optimal cuts which adapts the
robustness of the model and adjust the conservatism level for the estimated

solution.

The algorithms were compared and the computational results allowed

prove empirically the convergence of the proposed partition-based method.

The remainder of this dissertation is structured as follows. In Chapter
2 the basic concepts about two-stage stochastic programming problems and
properties of Sample Average Approximation Method are presented. Chapter
3 the notation and definitions are introduced; the partition-based model is
presented and there is a mathematical proof of its convergence. In Chapter 4
the proposed algorithms are described. In Chapter 5 a study case about
the bounding problem formulation for the Farmer’s problem is analyzed.
In Chapter 6 the computational results are presented and both proposed
algorithms are compared. Finally, in Chapter 7 and Chapter 8 the final

remarks and future works are discussed.


DBD
PUC-Rio - Certificação Digital Nº 1512267/CA


PUC-Rio- CertificagaoDigital N° 1512267/CA

2
Modelling the Uncertainty

George Bernard Dantzig(November 8, 191/ -
May 13, 2005) American mathematician recognized
by his constributions to operational research and
mathematical programming. His work “Linear
Programming under Uncertainty”, established the
foundations of the stochastic programming.

In this chapter the basics concepts about un-
certainty modelling are presented.

The stochastic programming is a theoretical framework to solve optimiza-
tion problems with uncertain data for which their probability distribution is
known or it can be estimated. In this section we will present some examples of
decision-making problems under uncertainty, to give an intuition about their

modelling and define some basic concepts related with that topic.

2.1
Inventory Model

One company wants to order x quantity of some product to attend the
demand d. The product unitary cost is ¢ > 0. If d is bigger than x the penalty
cost per unit to the company is b > 0. So, the additional cost would be b(d — x)
if d > x, and zero in otherwise. For other hand, if the company ordered more
products than the demand, the storage cost is h, and in that situation the

incured cost woul be h(z — d). Therefore the company total cost is (Shapiro et
al., 2009)

F(z,d) = cx +bld — z]4 + hlz — d]+ (2-1)
where [a]4 denote the maximum maz{a,0}. To make sense, we assume
that b > c.

The target is minimizing the total cost considering x as decision variable
and d as parameter. In that context, if the demand was known, the solution

would be z = d.
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Now, suppose the demand D is a random variable, and d is its realiza-
tion; so, is natural think about optimize the expected cost E[F(z, D)], and
consequently the corresponding optimization problem would be

M>i£1 E[F(z, D)] (2-2)

Let H(d) be the cumulative distribution function of D, and note that

H(d) =0 for d < 0. Put f(z) = E[F(z,D)] = cx + E[b|D — z], + h[z — D],],

SO

=0

“ol|d h d
:c+/0 ( [ _x]-i-al_ [‘T— ]+>dH(d)

o 9(bld h Od
_|_/x ([ _x]+a—; [:L’— ]+>dH(d)

:c+/0x wc&l(dw/ MWCZH(CZ)

T

:c+h/0IdH(d)—b/x+oodH(d)

thus

f'(w)=c—b+(b+h)H(z) (2-3)
Making f’(z) = 0, we have that the optimal solution of the problem (2-2)

is

b—c

T=H 1<b+h) (2-4)

The example above belong to a general class of decision-making prob-

lems under uncertainty, known as two-stage stochastic linear problems with
recourse. In that class, the decision process is made in two stage. In the first
one, all decisions that must be taken before the realization of uncertain data,
are taken. In the second one, decisions (recourse actions) that can wait to un-
certain data becomes known, are considered. Examples of first-stage decisions
are: (i) the wealth to be invested in a set of stocks market; (ii) the raw material
quantity to make some product; (iii) the expansion option for some company.
According to that, examples of second-stage decisions would be: (i) after the

investment, we can wait to watch the market behaviour and then decide if buy
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more, sell or keep the same portfolio; (ii) after buy the raw material we can
wait to know the demand and decide if buy more or maybe sell the excedent
amount; (iii) if the company decided expand, it is possible to wait to know the
true expansion cost and after that decide if this will be charged in the product

price or not.

2.2
Two-Stage Stochastic Linear Model

Some basic properties of the two-stage model are presented.

2.2.1
Basic Properties

In general, the two-stage stochastic linear programming problem is write
as
Min ca +E[Q(x,€)

el (2-5)
st. Ax=0b, x>0,

where Q(z, &) is the optimal value of the second stage problem
Min ¢'y
yer (2-6)
st. Tx+Wy=h, y>0.

Here & := (q, h, T, W) is the data of the second stage problem. It is worth
clarifying that part or maybe whole vector £ can be random and the expec-
tation value is taken with respect to its probability distribution ! (Shapiro et
al., 2009).

If £ := (h,T) represents the unknown data for the problem, then Q(z,§)
it is convex for all £. To see this, let us consider the dual problem of (2-6) given

by

Min 7'(h —Tz)
T (2-7)
st. Wir<gq.

By strong duality, if the problems (2-6) and (2-7) are both feasible and

bounded, theirs optimal values are the same.

Define the function

sq(x) = inf{¢"y|[Wy = x,y > 0}, (2-8)

IThe notation E¢[] will be used to enfasize that the expected value is taken respect to
the & distribution function.
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with W and ¢ as known parameters. Note that Q(z, ) = s,(h—Tx). By
strong duality, if the set

(q) == {r[W'r < ¢} (2-9)
is nonempty, then
sq(X) = sup m'x (2-10)
mell(q)

by other hand, II(q) thus define, it is a convex and closed set. In that

sense, we have the follow proposition
Proposition 2.2.1. The function Q(-,§) is convex for any & :== (h,T).

Proof. Let be o € [0,1], so

selaxt + (1 — a)xz) = sup 7'(ax1 + (1 — a)xa)

w€ll(q)
= sup {am'x, + (1 — a)wya}
m€ll(q)
<a- sup mx1 4 (1 —a) - sup 7'xa,
well(q) mell(q)
thus
sqlaxs + (1 —a)x2) < asq(x1) + (1 — a)se(x2), Vo €0,1]. (2-11)

Hence s4(x) is a convex function for all x. According to this, since Q(x,§) =
sq(h—Tx), Q(-, &) is a convex function also. [

2.3
Formulation Problem to Discrete Distributions (a Motivator Case)

—_
—

Suppose the support = C R? of ¢ is finite. That means ¢ has a
finite number of realizations &, = (¢, hn, Ty, W,,) with probabilities p, > 0,
respectively, for allm = 1,..., N. Then

ElQ(z, )] = pnQ(x,&). (2-12)

For a given x, the expectation E[Q(z, )] is equal to the optimal value of
the linear programming problem
N
Min G Y
R

(2-13)
s.t. Tox+Woyn=hp,, n=1,....N

Yo >0, n=1,...,N.
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So, in the two-stage problem (2-5), it is possible to mix the first stage

problem with the second one

N

M. ! n ! n
s.t. T,c+ Wy, =h,, mn=1,...,N, (2-14)
Az =0,

r>0,y, >0, n=1,...,N.

2.4
Scenario Model and Sample Average Approximation (SAA)

In the probability theory framework, the random variable £ maps points
of some sample space ) into a subset of RY. We call the scenario of each
realization of &, i.e. its value for each sample point. For problems in the real
world, the sample space €2 could be very large and consequetly, the realizations

set of & result is infinite.

Inspired by the two-stage formulation problem for discrete distributions,
the idea of Sample Average Approzimation?® is consider an smaller space Qy =
{w1,...,wn}, and create a finite set of scenarios {§; = £(w1), ..., = {(wn)}
uniformly distributed according to the distribution of ¢ via Monte Carlo

simulation 3

N
Min ot % n; q(wn) yn
s.t. T(wp)x + W(wn)yn = h(w,), Vn=1,...,N, (2-15)
Ax =0,
r>0,y,>0, Vn=1,...,N.
The goal is that the optimal value and optimal solution of (2-15), con-
verge to their counterparts for the true problem (2-5), increasing the scenarios

number.

The SAA method is a natural way to solve the original problem and it

has been broadly studied in the literature; (Kleywegt et al., 2002) is classic

2The following applies to any stochastic programming problem

Min {f(z) := E[F(z,£)]}.

rzeX

3Those realizations can be viewed also as historical data of N observations of &.
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work where we can find a detailed explanation about its implementation and

statistical properties.

2.5
Statistical Properties of SAA Estimators

What are presented in this section is strongly based on the chapter 5 (p.
155 - 163), with the same name, of (Shapiro et al., 2009).

Let us consider the general stochastic programming problem

Min {f(x) = E[F(z, )]} (2-16)
where X C R"”, is closed, £ is a random variable which probability
distribution is supported on a set = C R%, and F : X x = — R is a function

that can be viewed as a recourse action in the two-stage model.

Let &,...,&v, N be realizations of £. So, according to the above, the
SAA formulation to (2-16) is given by

zeX

Min {fws) = IR, fnﬂ} . (2-17)

n=1

It is important to say that SAA estimator depends on the sample and
consequently it is random; each realization of the sample is taken with 1/N
of probability and also all of them have the same marginal distribution (the
¢ distribution). Thus, {&,}Y_, represent a family of N random variables

independent and identically distributed (i.i.d).

In that sense, fy(z) is an ununbiased estimator of f(z), since

Elfv(@)] = 5 D BIF (&) = - 3 EIF(,6)]
—E[F(r,8)] = /(z)

By other hand, by the Law of Large Numbers we have that, under certain
regularity conditions, fN(a:) converges pointwise with probability 1 (w.p.1), to
f(z) as N — oo, since for any x € X, if {§, = &,(w)}nen is a sequence of
random variables (i.i.d) defined in some probability space 2 with probability
measure P, then {F(x,&,)}}nen is also (i.7.d) and
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lim —ZF:(; &) =E[F(z,8)] | =1, (2-18)

N—ooo [V

fN(w)
it holds. (See. A.1).

2.5.1
Consistency of SAA Estimators

It is said that an estimator éN of a parameter 6 is consistent if éN — 0

as N — oo w.p.1. The SAA estimator is consistent.

Let Uy be the optimal value of the SAA estimator (2-17), and by ¢*
the optimal value of the true problem (2-16), respectively. It is clear that
On < fa(z), but also, if (2-18) it holds, it is true that lim supy_,. Oy < f(x)

w.p.1, since for any k and N we have

sup@k < fN(x)

E>N
and
limsup@N
N—o0
/—A— R
P | lim supd; < hm fN( )| =P (lim supvy < f(x))
N—oo >N N—s00
f(x)

=P | lim supdy < 1nff( )

N—o0

9
=P (lim supigN < 19*) =1.
N—o0

Additionally, we have the following proposition:

Proposition 2.5.1. Suppose that fN(x) converges to f(z) w.p.1, as N — o0,
uniformly on X. Then D converges to v* w.p.1 as N — oo.

~

Proof. The uniform convergence w.p.1 of fx(z) = fn(x,w) to f(x) means
that for e >0 and w € Q there is N* = N*(w) so that

sup [fn(a,w) = fa)] < e
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Since

|[fx(z,w) = f(@)] < sup | fn(e,w) = f()]

zeX

we have

~ ~

fn() = flz)<e and f(z)— fn(z) <e

in both cases

inf fx(z,w)— inff(z) <e and inff(zx)— inffn(z,w) <e

reX zeX zeX reX
5,—/ N—_—— —— 5,—/
N 9* 9* N

It follows then that |0 (w) — 0*| < € for all N > N*. O

2.5.2
Asymptotics of the SAA Optimal Value

As mentioned earlier, a SAA estimator is random and for that reason is

important measure the error magnitude (dispersion) for a given sample.

If we suposse that sample is (i.i.d), then for a fix point z € X, we
have that estimator fy(z) of f(z) is unbiased and has variance o2(z)/N,
where 0%(z) := Var[F(z, )] is supposed finite. Moreover, by the Central Limit
Theorem (See. A.2) we have that

NV fn(@) = f(2)] = Vi, (2-19)
where “=" denote convergence in distribution and Y, has a normal
distribution with mean 0 and variance o(z), detonated by Y, ~ N(0,%(z)).

Thats means fN(x) has asymptotically normal distribution.

This leads to the following 100(1 — )% confidence interval for f(x):

ivte) = 222, )+ 22200, (220

where 7,5 := ®71(1 — /2), and *

& (x =—Z (,60) = fn(2)]? (2-21)

is the sample variance estlmate of o?(x). That is, the error of estimation
of f(x) is (stochastically) of order O,(N~1/2).

Let us consider the optimal value Uy of SAA problem (2-17). It is clear
that for any 2/ € X the inequality fy(2') > infyex fy(2) holds. By taking the

“Here ®(-) denotes the cdf of standard normal distribution
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expected value of both sides of this inequality and minimizing the left hand

side over all 2/ € X we obtain

inf Bljv(e)] 2 B | inf ()| 222
Since E[fy(z)] = f(x), it follows that ¥* > E[Jy]. In fact, typically,

E[Jy] is strictly less than 0%, i.c., Jy is a downwards biased estimator of ¥*.
As the following result shows, this bias decrease monotonically with increase

of the sample size N.

Proposition 2.5.2. Let Uy be the optimal value of SAA problem (2-17), and
suppose that the sample is (i.i.d). Then E[dy] < E[0y,1] < 0* for any N € N.

Proof. We seen above that IE[@N] < 9* for any N € N. Put

N+1

fya(z NH”ZM@L

_N;Jrl <—(N cF(z,§)+ N-F(x,&)+ -+ N - F(CU,§N+1)))
— T % e X (F (6 4 P, €) 4+ Fla )
Zm;ﬂ}(mvﬁm)
+ P(2,6) + F(2,&) + -+ F(z,§v41) +

Zm;tzF(%fm)
F(I,§1> +F<$,§2) ++F($,£N>J>

Z77L;£N+1 F(z,&m)

| N[
“Ni1 [NZF(%%)] :
n=1

m#n

Since the sample is (i.i.d) we have that

mf Z F(z,&n)| = E[dy]. (2-23)

:J:EX

m#n
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It follows that

EWNH] =E mffNH(@}
lzeX
B 1 N+1 1 T
—E | ~NF
N nzl (N%:n (35’5’”"))
B 1 N+1 1 T
>E | —— nf— > F(z,&n
- _N+1 n=1 (zg){N; (x g )>_
1 = 1
=— E | inf— F(z,&,
P |y T res)
1 N+1 .
== [Un] = E[dy],
N +1 —

which completes the proof. [

2.6
The Farmer’s Problem

One farmer specializes in growing wheat, corn and beet. He has 500km?
of land and he must decide how much land would be allocated to grow each
crop. By other hand, he must attend several restrictions related with his
plantation. First, he must have at least 200 tons (7") of wheat, and 2407 of
corn, to feed his livestock. Those quantities can be obtained by own plantation
or buying them in the market. The buying price per wheat ton is $238 /7', and
per corn ton is $210/7. Additionaly, every excess can be sold in the market at
price of $170/7 for wheat and $150/7" for corn. Another important restriction
is related with the beet sale. By legislative imposition the sale price per beet
ton is fixed in $36 /T for the first 60007 sold. After that, the sale price becomes
$10/T. We assume that plantation cost to each crop is: $150/km?, for wheat;
$230/km? for corn and $260/km? for beet.

There is uncertainty in the land productivity. The farmer does not know

the efficiency of his land for each crop.

In that context we will present the two-stage formulation of the Farmer’s
problem. Note that there exist three uncertainty fonts (land productivity)
and three first-stage decisions (land amount allocated). Moreover, we have

the amounts sold and the amounts bought as second-stage decisions:
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First-Stage Variables

rp: Land amount allocated for wheat (in km?)
ry : Land amount allocated for corn (in km?)

rp: Land amount allocated for beet (in km?)

Uncertainty

(1o Random variable that represents the
land productivity for wheat (in T/km?)

&v o Random variable that represents the
land productivity for corn (in T'/km?)

¢ Random variable that represents the
land productivity for beet (in T'/km?)

Second-Stage Variables

yr:  Wheat amount bought (in T)

yy © Corn amount bought (in 77)

wr:  Wheat amount sold (in 7')

wyr - Corn amount sold (in 77)

wp, : DBeet amount sold at
favorable price (in T')

wp, : Beet amount sold at

unfavorable price (in T')

Since the farmer wants to minimize his plantation cost, the two-stage

stochastic linear programming problem is:
Min 150x7 + 230x, 4+ 26025 + E[Q(z, §)]

st.  xr4+zy+as <500, (2-24)

T, TM,TB Z 07

where

Q(z,&) =Min  238yr + 210y — 170wr — 150wy, — 36ws, — 10ws,
Yy, w

s.t.  &rxr 4+ yr — wr > 200,
Epvxar + Yy — wyr > 240, (2-25)
§prp —wp, —wp, > 0,
yr,ym = 0,  wr,wy, wp,, wp, > 0.
To simplify the problem, we assume that productivity land for each crop,
is represented by independent random variables with uniform distribution,

which cumulative distribution functions are equal to
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t—2, 2<t<3 24 24<t<36
Fe (t) =14 1, t>3 Fe,(t)=4¢ 1,  t>36
0, t<2 0, t<24

=16 16 <t <24
Fe,(t) =14 1, t>24
0, t <16

respectively.

Solving (2-24) (which implies calculate triple integrals and solve the
optimization problem), we have that the first-stage optimal solution is:
rh = 135.83 km?, x4, = 85.07 km? and x} = 279.10 km?, and the farmer profit
is: $111237. See (Birge and Louveaux, 2011).

Now we will formulate the SAA estimator for (2-24) to analyze later its
convergence and compare its error magnitude, according to the explained so

far.

The SAA estimator for the Farmer’s problem is equal to the optimal

solution of the follow linear programming problem:

150z + 23025 + 26025+
238y7(wy) + 210y (wy) — 170w (wy,)
— 150wy (wy,) — 36wg, (w,) — 10wp, (wy,)

Moy 1 Z {
st.  xp+xm -+ <500,

zr, Ty, g 2 0,

&r(wn)rr + yr(wn) — wr(wn) = 200, (2-26)

Ent(wn)Tar + ynr(wn) — war(wy) > 240,

§p(wn)rp — wa, (Wn) — wp,(wn) >0,

wg, (w,) < 6000,

yr(wn), ynr(wn) = 0,

wr(wy), war(wn), wp, (Wy), wp,(wWy) >0 Vn=1,2,... N.

It is worth say it that the large number of scenarios implies large scale.
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The Partition-based Method

3.1
Notation and Preliminary Definitions

In this work, we assume the following notation and definitions:

We start with a probability space (€2, B, P), where B is a Borel sigma-
field on €2, and P is a probability measure. Also we consider the random vector
£:Q — R4

By computational reasons, we will assume an alternative definition of

partition.

Definition 3.1.1. The set Z = {I}}_, of cells Iy, is a partition of the support
= CRY of € if:

Definition 3.1.2. We say that partition J = {Jw}i_, refines a partition
IT=A{L}}, ifm>nandif VE' =1,...,m 3k such that J C Ij.

Definition 3.1.3. ¢ € R? is an extreme point of I, if €F) = a-& 4+ (1—a)-&
holds for some &,& € Ij, such that & # & and o € [0,1], thena =0 ora = 1.

The support of the random vector & = (&;)%_, is of the form:

d
= 1= (3-1)
i=1

=, is the support of the random variable & : 0 — R, for alli =1,... d.

(11

In the Farmer’s problem case, we have just three dimensions (wheat (T),
corn (M) and beet (B)), so

k,— k, k,— k, k,— k,
I = &7, 68 [, € x g5 65, (3-2)
Additionally, we denote the mean £*) = E[¢|¢ € I;] of € in the cell & by:

= (k) =(k) =(k
f(k) :( ;) ](\/[)751(9))1&7
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In the case of a uniform distribution we would have

(k) 5( +§k+)
& =5

According to the above, the set of extreme points of I, which we denote

Vi € {T, M, B} (3-3)

by E(I}), could be write explicitly as:

E(I) = {(&, 5. €5V a,b,c € {—, +}} (3-4)

In the case n = 1, we have

=== [€T>€T] [5]\_/[751-1_/[] X [55765]

For a uniform distribution

— + — + — +\ t
5_(1):5: (gT:gT‘;fT,gszM‘ngfB:fB‘ng) '

X1, (&) will denote the indicator function of the set I; defined by

1 af el
X1k<€>_{0 Zf €§ka

3.2
Motivation

Give a partition {I;}}_; of Z, by the total probability law (see A.5), the
expected value E[Q(z, )] can be expressed as:

ZE (z,6)|€ € I] - P(€ € I)
(3-5)
—ZE (2, x5, ()],

By other hand, we have the following results:

E[Q(z,€)xs, (¢ /@xs D, (E(w))dP(w)
Qe wire)
/Ma:v@xfdP( )

1, &€k
—%%QWOZ;(W

=Mazx Q(z,§) - P(§ € Iy),

Eely,
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then

EIQ(r, €)1, ()] < Moz Q. €) - P(E € 1),

In this way it holds that

n

EQ(x,€)] = Y EQ(r.x (&) < Y Mar Q(x,€) - PEE I).  (3-6)

Additionally, if Q(z,&) is a convex function in ¢ for any x, by Jensen’s
inequality (see A.4), it holds that

Q(z,E[¢I€ € I]) < E[Q(z, &€ € Ii],

SO

> Q. EEE € I]) - P(€ € I) < E[Q(x,€)]. (3-7)

The equations (3-6) and (3-7) show that partitioning the support =
considering the first conditional moment, we can find deterministic bounds

for the true (continously distributed) problem (5-1).

So, the remainder problem is finding an optimal way to split the support
=, to reduce the bounds difference gap and converge to the optimal solution

of the true problem.

The partitioning problem consist of finding a finite set of probabilities
that fits the underlying distribution of ¢ and allow discrete the expected
operator to find an approximate solution in the sense of numerical integration.
The common procedures of the exist approximation methods are based on the
Jensen inequality and Edmundson-Madansky inequality to set a lower and
upper bound, respectively, for the case which the recourse function is convex

in the uncertain variable (Birge and Louveaux, 2011).

The Edmundson-Madansky inequality (see A.8) illustrates that if £ —
Q(z,£) is convex, and we consider the set of extreme points of the convex hull
of =, denoted by ext= , and the sigma algebra &£ of all subsets of ext=, then if
we can express any £ € Z as a convex combination (average) of extreme points,

i.e. if ¢(&,-) is a probability measure on (ext=, £) such that

/ e g6 de)=¢ VEEE (3-9)
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then

BQM.)< [ Qo)

where A is the probability measure on £ defined by

/ S(E(w), A)P(dw) VYA€ E
By the condition (3 8), it holds:

[eora= [ ([ o, de>) P(dv)
<[ s

= / eX(de).
ecert=

27
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3.3
Method

The partition-based method consists in solve the sequential refinement
problem, spliting the support of the distribution and finding the upper and
lower solution for the given partition, until obtain a gap small enough to garant

that the estimated solution is convergent.

Algorithm 1 Solve the Bounding Problem

Require: 7 = {I,}}_,, € stopping criteria.

Ensure: 9] optimal value for the lower bound problem, 9}, optimal value for
the upper bound problem.

Step 1
Solve N
: ¢
9 Min cx—i-;]\ge%ch(xaf)'P(gG]k)
st. zelX.
Solve .
e _ M dr 4+ Qx,E[E|E € L)) - P(§ € It)
L= ’ k=1

st. zeX.

if ¥}, — 95 < e then
stop

else
go to Algorithm 1 or Algorithm 2 with Z = {I;}}_,, and return to
Step 1

end if
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3.3.1
Convergence of the Method

In this section we will present the proof about the convergence of the

partition-based method.

Proof. (Upper bound) Define F = {Z = {I.}}_, | T is partition of Z}. We
have by the Total Probability Law (A.5) that:

EQ(z.9)] = > / Qar, Ew)x1 (E@)dPw) VI ={L}j_ € F, (3-11)

also, we saw that

Z/ng DX (6())AP(w) <
(3-12)
> MazQ(z,8)-P(E€ L) VI={L}}_, €Z.

Given L = {I}}_, € F, put

}j%nyg P(¢ € ).
k=1

Consider J = {Jp}y_y and T = {I}}_, in F such that J refines the
partition Z, then by definition m > n and Yk’ 3k such that

Ji C 1.

As for allT = {I;}}_, € F, intly # 0 Yk and intlyNintly =0 Yk #
k', this implies that for all k = 1,...,n, there is a set {k:’gk), . .,k’gi)} C
{1,...,m}, such that

n= J %
ie{k' ™8y

and (K, RSy O R, k8 = 0 for all ki ky € {1, n)

Note that

{1,...,m}—U{k’ s KUY

k=1
Thus,
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Moz Q(x,€) < Mox Q(w,€), Vi € (K1, K}, (3-13)
S
and,
Y PEed)=PEel) (3-14)
ie{k ), )y
S0,

> MazQ(x,8) - P(E € Ji) < > MazQ(x,8) - P(§ € Ji)

i

ie{k'™ kY ie{k'™ ey

= Maz Q(x,§) Z P e ;)

el
iE{k/(k) ..... k"(k)}

= Maz Q(z,§) - P(§ € I).

Eely,

In that sense

m

Z axQ x,&)- P& € Jy) = Z Z %%JUQ(%@ -P(§ € Jy)

k k
=1 e )

S Jg@xQ z,§) - P(§ € Iy).

Therefore,

3

g;g%Qxf @E%dékﬂ%%QWKWPQGQ) (3-15)

Let {I™},>1 C F be a indeved family of partitions such that
AN {Ix}7_, where Iy is a compact and convex set Yk, and the rela-
tion: TV refines the partition T™, it holds. If we define 6, := 0(Z™), then

according to (3-15) we have that the sequence {0, },>1 is nonincreasing.

Furthemore, by (3-11) and (3-12), the sequence {6, },>1 is lower bounded,

therefore {0, }n>1 is convergent, so

0, — mf 6, as n — oo.
{I(n)}nzlgfg

By other hand, gwenI ={L}r_, € {IM}, 51, if Q(x, &) is continuous,

as I, is compact, there is £**) such that
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Vk, Q(z,8) < Q(z,¢%7) V¢ € I

Moreover given € > 0, by continuity again, Yk there is an open ball
Bs, (€%9)) with center in €5 and radio &, > 0, such that

0< MawQ(r,§) = Q(x,€) <€ V€€ By (€™) N .

Therefore, given € > 0 it is possible to find I = {fk}ﬁzl € {ZM},1,
such that I is the smallest compact and convex neighborhood of €**) for all
kE=1,...,n* So,

Vk, 0< MazQ(z,&) — Q(z,8) <e Vel (3-16)

g€l
Since Yk (3-16) it holds if £ € I, ie if X; (&) = 1, then is true the

following inequality:

0 < MazQ(z,&)x;, (&) — Qx, §)x;, (§) <e-x; (), Vk. (3-17)

g€y

Integrating respect to the probability measure P, we have:

Maz Q(z,€) - / xi. (E@))dP(w) - / Q(, €£(@))x;, (E(w))dP(w)

gely,

< [ xi(enap@). v

But [, x; (§(w))dP(w) = P(§ € Ii), so we have

0< Y M Qla,§)- P € 1) =Y [ Qo€ ¢(w)aP)

k=1 STk
n* A (3-18)
<e-Y» PEel)
k=1
=1
Then, given € > 0 there is n* € N, such that
0<0,—-E[Qx] <e VYn>n" (3-19)

where n = |IM| is the size of the partition T € {T™},>, such that
I refines the partition T,

According to the above, if Q(x,&) is continuous in &, we can prove that
the sequence 0, — E[Q(x,&)] asn = |Z| — oo, with T™ € {Z(M},,.
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Additionally it is clear, under that hypothesis, that if

O* = Min 'z +E[Q(x, )]

(3-20)
s.t. x€ X,
and
9 = Min 'z + Z Maz Q(z,§) - P(€ € Iy)
s (321)

s.t. x e X,
for some T € {ITM},1, then ¥ | 9. Which completes the proof. O]

The proof for the lower bound is quite similar to the upper one.

Proof. (Lower Bound) If Q(x,§) is convex in &, we saw that

S Q. Ele € ) - P(€ € I) <
T (3-22)
> [ Qe ENPE) YI= (I € 7.

Consider J = {Jp}p_, and T = {Ix}}_, in F, such that J refines T.
We know that for all k € {1,...,n} there is {k’gk), ce k’gi)} such that

]k Ji7

[
-

. k k
ie{k'™ ey

where (K1, KSR, KDY =0 for allky, ky € {1, 0}
with ky # ka, and

k k
{1,...,m} = (WP, .. &8
k=1
By other hand, it is true that

E[¢|§ € Ji] - P(€ € J;)

Vk, E[|§€ ] = a3,
k ze{k’ig’k/(k)} P(g € [k)
Note that
P J; 1
2 e >, Ped)
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Then (3-23) is a convexr combination, so

1
Qz, E[¢[S € I]) < Plecly) Y. Q@ E[EE € ) PE e ).

. k k
ie{k'™ kY

Thus,

n

Q(x,E[§|§ € I])-P(§ € I) <

k=1
Z Z Q(z,E[¢|§ € Ji]) - P(€ € Jy)
k=1 et®™ k(Y
= " QU Bglé € Jy]) - PE € Ji).
k=1
Therefore

n

Q(z,E[E|¢ € I]) - P(§ € I) < Q(x,E[E[¢ € Jw]) - P(€ € ). (3-24)

k=1

Given I = {I;}}_, € F, define

3

0T) =S Qz,El¢ € I,]) - P(€ € I). (3-25)
=1

Let {T™},>1 C F be a indeved family of partitions such that
zn = {Ix}7_, where Iy is a compact and convex set Yk, and the rela-
tion: TV refines the partition T™, it holds. If we define 6, := 0(Z™), then

according to (3-24) we have that the sequence {0, },>1 is nondecreasing.

b

Moreover, by (3-22) the sequence {0, }n>1 is upper bounded, so {0y }n>1

18 convergent, and

0, —  sup 6, as n— oo. (3-26)
{I(n)}n21g,?

As Q(x,€) is conver, if Z is bounded and convez, then Q(x, &) is continuos
(see A.3). So given T = {[}7_, € {Z™},>1, and € > 0, we have that:

Vk, 30, >0 st |Q(x,8) — Qz,E[[E € I])| <€, V€ By (E[E[§ € Ii])NIj.

Therefore, given € > 0 it is possible to find T = {I,}1-, € {T™},>1,
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such that I, is the smallest compact and convex neighborhood of E[¢[€ € I
forallk=1,...,n*. So,

vk, |Q(x,8) — Q(x.EElE € Ii])| <¢, VEE I (3-27)
Since for all k € {1,...,n*} (3-27) it holds if € € I, i.e. if X, (&) =1,

then it is true the following inequality:

|Q(x, &)x;, (§) — Qz, E[§]€ € L])x;, ()] <€, VE,

S0

3 / Qa, £@))xy, (€@)dP) = Y / Q(r EIE[€ € L))y (€w))dP(w)
33 / Q. £w)) — Q. EIElé € L)y (€w))dP(w)

< ;/Qe X (E(w))dP(w) =€ ;p(g €ly) =e
Then

0, — E[Q(z,£)] as n — oo,

additionally if U* and ¥} are defined as (3-20) and (3-21), respectively,
then ¥ 1 v*. I

3.3.2
Convex Case

In this section we will show how to solve the problem

Max Q(r,€),  with Iy €T ={I}jy,
€l

when Q(x,&) is a convex function in ¢ for all x.

In general, if U C R? is open and convex set, the convex function
Q(z,-) : U — R is continuous (see A.3).

For the case where the probability distribution function of &, has a
compact support = C R? we can garantee that Q(z,¢) is continuous on
the convex hull of =. In that sense, Q(z,&) must reach its maximum and its

minimum on the convex hull of =, since the convex hull of a compact set in
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R? is compact; so the set of optimal solutions for the problem Maxgcs, Q(x, &),

is not empty, Vk =1,...,n.

In addition to above, by the maximum principle of convex optimization
(Rockafellar, 1970), the maximum of the convex function Q(z,-) : U — R on
a convex and compact set U C R?, is attained on the boundary. Nonetheless,
in a more general way, the maximum of the function Q(z, -) relative to the set
S where is not constant, is attained in the extreme points of S or in a convex

combination of them. To see this let us consider the following:

Suposse that the maximum of Q(z,-) relatived to S is reached in
£ = af + (1 — a)f for some o € (0,1) and &,& € S with € # £'. So, by

convexity we have

Q(z,¢) < aQ(z,§) + (1 — )Q(z,¢").

But by hypothesis, Q(z,£) < Q(,€) and Q(z,¢) < Q(x,). As
Qz,8) # Qz,&) and Q(x,&) # Q(x,&) (since £,¢ € ), then Q(x,€) <
Q(z,€) and Q(z,¢') < Q(x, €). Therefore

Q(xag) < O‘Q(x7£) + (1 - Q)Q($75)7

Q(z,€) < Q(x,¢)

which is a contradiction.

Follow this idea, it is possible to prove also that if £’ is an extreme point

of a free-line closed convex set U C R?, then

¢ € Argmax Q(x, §)
geU

where Q(z,-) : U — R is a convex function with z fixed, that must be
bounded above every halfline of U C R?. A proof of this fact is presented in
(Tuy, 1998).

In accordance with the above, Q(z,§) reach its maximum in some point
of the set E(I;) ', ie., E(l;) C Argmax.; Q(z,£), hence the following

equivalence it holds:

'Remembering that E(I;) denote the set of extreme points of I},
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Max Q(x,€&) = Max Q(:v £). (3-28)

gely, §€E(Iy)
Explicity, Max¢cp(r,) Q(x,§) can be write as:

Max Q(z.) = max{Q(a, €] € {—, ) (329

where , is the value of £ on the vertex s of the cell k, and x is fixed.
h f’“’) h 1 fe h f the cell k£ d z is fixed

3.33
Rectangular Partition

We consider rectangular partitions since a rectangular cell is a convex
and compact set, and they allow compute easier the discrete probability
distribution {P(§ € Ij)}7_; used to discretize the expectation of Q(x,&).

A rectangular cell I has the form:

d

L= Jle" .65, (3-30)

where fi(k’_), denote the lower end of the interval on the dimension ¢ of

partition k, and §Z-(k’+) denote the upper end one (see Figure 3.1).

( f(k -) gk +)’ E(k,ﬂ)

(&40

( f;(rk'ﬂ (k.+) f(k +))
(E;(rk,ﬂ’ g;c,—)’ E(Bk,ﬂ)

(f%’k =) f(k ,+) f(ka—})
B "’“‘-’ Ik

( Erk,—}’ gc,—)’ fg"_})

( g'k,ﬂ’ gc&}’ (Bk,—))

T

(5.7,

Figure 3.1: Extreme points of the cell I
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4
Algorithms

The three basic decisions for refining the partition from Z = {I;}7_; to
T' = {1}t are to choose the cell, Iy, € Z, in which to make the partition,
to choose the direction in which to split [, and to choose the point at which

to make the split.

In this work we will assume that the cutting point is the mean of £ over

the direction in which to split ..

4.1
Solution Algorithm with a Radom Partition Refinement (SARPR)

Here we present the first version of the partitioning algorithm. The
idea is splitting uniformly the uncertainty domain (support of ¢ distribution

function).

In the first step we just have to choose randomly the dimension ¢* which
is going to be split to get the two initial cells. The cut is made in the mean
of ¢ in that dimension, obtaining two subintervals; the first one is the lower
end & to the mean &, and the second one is the mean to the upper end

. respectively. These subintervals are multiplied (in the sense of cartesian

product) with the remainder dimensions (see Figure 4.1).
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When we have more than one cell, we also have to choose randomly the

cell £* that is going to be split like the original support of £.
To get the new partition that refines the previous one, we keep the others

cells different from £* and add the two others that were obtained by splitting

the dimension ¢* at the corresponding mean value of £ inside the cell k*.

TH) )
[fi*z wéi=m ]

EERTTIN o o
:- I+ [ g(*’_),fék*’ﬂl >
~Z I\
5! S :
:./: [.‘E,k*’_),f;k*’+)] ]n n+1l
)
)

7\

=M

Figure 4.1: Example of refinement ¢* = M

See also Figure 4.2.
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Algorithm 2 SARPR

Require: 7 = {I;}}_, initial partition of =
Ensure: J = {Jp}5s" such that J refines Z
1: if n = 1 then
2:  r; <rand

33 if 0 <r; <1/d then

4 1" <=1

5. elseif 1/d <r; <2/d then

6: =2

7 :

8: elseif (d—2)/d<r; <(d—1)/d then

9 f<—=d-1

10:  else

11: 1 <—=d

12:  end if

13: Put Jy = [§,6] X [1 67,67 and Jy = [&-, &8 x

te{1,2,..dp\{i*}

I &,

te{1,2,...,d}\{i*}
4 J={Ww}i
15: else
16: 1y < rand
17: 19 <— rand
18: for j=1tondo

19: if =1 <r; << then
20: k* <=7
21: end if

22:  end for
23:  if 0 <ry < 1/d then

24: 1 <e—1

25:  elseif 1/d <ry < 2/d then

26: 1 <=2

27:

28:  elseif (d—2)/d <ry<(d—1)/d then
29: F<e—d-1

30: else

31: 1 <—=d

32:  end if

3 Puth = kVkA K Jp =678 T (6774t

i*

and —_ * * ok *
30 Sy = [EF e T €576
te{1,2,....d}\{i*}
35: T = {Jwhi

36: end if
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SARPR for the Farmer’s Problem

Figure 4.2: Partitioning of support with: (a) 2 cells, (b) 3 cells, (c¢) 4 cells, (d)
5 cells, (e) 6 cells, (f) 100 cells, (g) 1000 cells, (h) 15000 cells.
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4.2
Solution Algorithm with Worst-case Partition Refinement (SAWPR)

In this chapter a more efficient algorithm to partition the support of ¢ is

presented.

The idea is reducing at each iteration the bounds difference gap splitting
the cell at the dimension to make worst the recourse action, using the more

conservative previous optimal solution (upper bound optimal solution z*).

4.3
How to Choose the Dimension

As mentioned above, the dimension that is going to be split corresponds
with the direction in which the recourse action becomes worst, i.e., the
dimension that is free to move to the worst case to attained the maximum
of the function Q(z*,¢), for a given z*. This adaptation of the robustness is
inspired by (Bertsimas and Sim, 2004); according to that, for a given Iy, we

have to solve the following linear programming problem:

Max Q(z",€)

E€ly,z

s.t. ffk) — zz(ék) — 5-(]“7)) <& < fl(k) + Zi(fz‘(k7+) - é'(k)) Vi,

(2

d (4-1)
Zzi S 17
i=1
Let
( &Y —z(E ") <6 <&V 4™t - gY) i)
d
H(I) =K €= ZZ"<1’
i=1
L 0<z<1 W
W
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Note that the optimal value ¥*(z) of the linear programming problem

9"(z) =Max  Q(z", )

Eely
st €M — (€W — M) < g <EW (e — My i,

for a fixed z € [0,1] without the restriction 25:1 z; < 1, increase if z
increase in any dimension i € {1,...,d}, i.e., if 2’ € [0,1] is such that 2, > z
for some s € {1,...,d}, then

fees|dV — @ - ) <6<+l -V viyc
(€= €W - 2(EW —e®) <& < & 4 2™ —EWY i,

and therefore 9*(z) < ¥*(2').
That means that the optimal solution for (4-1) is searched increasing
z in all directions, but with the restriction Zle z; < 1, we impose that this

searching must be made it in just one of them, on which the uncertain variable

is free to move to the worst case.
To solve (4-1) easier, we can see the following result:

Let

@e&ﬁlﬁﬂ}A@=$>Weuww@\m}

V(Ik)z{éefk Vie{l,...,d}

be the set of points for which just one dimension includes the extreme
values for the uncertain variable (worst case), and the reaminder hold in the

mean scenario (center of the cell).

Proposition 4.3.1. The set of restrictions for (4-1) is equal to the convex
hull of the set V(I), i.e. Z(1i) = convV (Ij).
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Proof.

€ € convV (1)

V(5| | V)l |
== 0;-¢ with 0<0;<1Vj, > 0;=1, and & €V(L;)Vj
j=1 j=1
V()| |
&= ) 0;-¢, Vi
j=1
=00+ 0+ > 0, v
J€Ji jeJ; jett

where J; U J; U JF ={1,2,...,|V(I})|}.
We have that

IV (Ix)]
DO+ > 0+ 0= 6, =1.
JEJi J€J; jes;t i=1
Let
zizl—ZQj: ZQJ—FZ@JZO
jedi jeJ; jegt
0 )
ST E5 SUR DIVES SO
— Ef,_/ zeJ[ jegt )
=1-z; ;;Z
> 71— 2) +ug"
F(k F(k ke, —
| — @ )
)
F(k k,
DR DR DL EE i
J€Ji JET; jeg;t
< E9(1— 5) + 50
| =& (Y - )
Therefore
F(k F(k e, — F(k k F(k
&Y —a@ - ") <6 <8V +ag -9 v,
Also,
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and therefore

ISH

gzizd—z:(z:ej) =1

=1 JjE€J;

= e Zx(). 0O

As the set of extreme points of conv V (I) is the set V(1) itself, and
Q(z*,€) is a convex function, we know that (4-1) is equivalence to

which is computationally easier to solve.

4.4
How to Choose the Cell

Since we want to reduce the gap between both bounds at each iteration,
we will choose the cell where the distance between the upper bound and the
lower bound is the biggest. So, we have to solve:

b € Argmas ( Max Q") — Qa" Efele € fkb) (4:3)

§eB (I

Choosing the cell in this way, we are trying to equalize the convergence velocity
for both bounds.
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Algorithm 3 SAWPR

Require: 7* and Z = {I;}}_,

Ensure: J = {Jp}1it} such that J refines T
1: if n = 1 then

2:  Put
& EAggnax Q(z",¢)
s.t.ujz G—z(6—&)<&G<&+au( —&) Vi
in1

0<% <1 Vi

3. Let " € {1,...,d} be such that &. € {&:, &5}

4 Put J, = [£7,&] x [T [&.&] and J, = [&, &) X
te{1,2,....,d\{i*}

[T &8
te{1,2,d\{i*}
5: J = {Jk’}Z/:l
6: else
7. Find k* € Argmax < Max Q(z*,&) — Q(z*, E[¢|€ € [k]))
k §€E(Iy)
8: Put
£ € Argmax  Q(z",¢)
§€Ik*,z
st EF (@) — ey < < € (¢ — Ry v
d
i=1

9:  Let i* € {1,...,d} be such that & € {&.,&0}

10: Putk' <= kVk# K S =578 T 657,45
te{1,2,...,d}\{i*}

k*, k*,— k*,
1)« IT [eF 7, e )
te{1,2,..d}\{i*}

and B
11: Jpy = [fi(f ) ¢

_ +1
12: J = {Jk/ Z’:l
13: end if
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4.5
Graphyc Explanation of the SAWPR

Since the Farmer’s problem is dimensionally representable, we will take
this problem as an example of two-stage stochastic linear programming prob-
lem with complete recourse, to explain graphically the working of the SAWPR

algorithm.

At the first stage we have to choose the dimension that is going to be
split to get the two initial cells of the first partition. To do that, it is necessary
find the optimal solution of the upper bound problem (5-5) to get the initial

allocation Z{ requiered to solve:

£ € Argmax Q7€)
EEE, 2

s.t. G—u(&G—6)<&<&G+uE &) Vi

i€{T,M,B}
0<z <1 Vie{l M, B}.
As was mentioned above that problem is equivalent to:

€ € Argmax Q(zg, €),
g€V (Io)

where

V(lo) = {f €=

Ge{& &Y N =86 Vs e{T, M, B} \{i},
Vi € {T, M, B} ’

since V' (Iy), is itself the set of extreme points of the convex hull
conv V (Ip).
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After that, according to Algorithm 3, we have to identify the dimension
that was free to move to the worst case (extreme value) in £*, which was

mathematically expressed by:

i* € {T,M,B} st. & €{&., &0

Assuming that & ~ U([2,3], & ~ U([2.4,3.6]) and &g ~ U([16,24]),
the support of £ and the convex hull (shaded region) of V' (), are represented
in Figure 4.3.

24

ﬂ L
” NEAY

7

Vi

18

AN\

16 =

3.5

2.6

2.5

2 2

Figure 4.3: Convex hull (shaded region) for the set V' (ly), where [y = E is
the original support of £&. The black point is the optimal solution for the
maximization problem of Q(z, £) with & € convV (Ip).

Evaluating the recourse function Q(zj,¢) for the initial allocation Zj at
each point of the set V(Iy), we can find the vertex where the maximum of
Q(z§, €) is attained, and with this, identify the dimension where the uncertain

variable leave the center of the cell.
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According to the Figure 4.3, the maximum was attained at the point
& = (&r,60,&5)t = (2.5,3,16)!, which means that the uncertain variable
move to the worst case for the third dimension (beet dimension). So the initial
cut is made in the mean of g with support equal to [5,&4] = [16,24], as

shown in the Figure 4.4.

2 2

Figure 4.4: Initial cut in the mean &5 = 20.

The red edges indicate the dimension that was chosen to be splitted and

the red plane represented the cut.

With the two initials cells:

L = [5;7§;] X [5174751_\‘—/[] X [ggvgB] = [273] X [24736] X [16720]7
Iy = [5;75;] X [5;47£1TJ] X [EB,@] = [2a3] X [2'473'6] X [20724]7

we solve the upper (5-5) and lower (5-9) bound problem.

Considering the last optimal solution for the upper bound problem z*
as a new estimated allocation, we have to choose which of the two existing
cells is going to be split to refine the actual partition, solving the problem
mentioned in (4-3). The goal is identifying the cell where the difference gap
of the lower and upper approximation of the expected value of the recourse

function is bigger. Mathematically this was expressed by:

k* e Arg;nax ( Max Q(z*,&) — Q(z*, E[¢|€ € ]k])) .

§eE(Ik)
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For this initial partition, the chosen cell was I} = [2, 3] x[2.4, 3.6] x[14, 20].

At this stage we have to come back to the initial problem about choose
the dimension at which the cut will be made, but that is done in the same way

considering this time the optimal cell [; instead of the original support =.

24
22

20

18

16 =

24

22

20

18

16 =

35

25

Figure 4.5: (a) Convex hull (shaded region) for the set V([;), where I, =
[2,3] x [2.4,3.6] x [14,20]. The black point is the optimal solution for the
maximization problem of Q(z*, ) with & € convV (I;). (b) Choose of the cell
1, as the optimal cell.
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Doing this, the chosen dimension is the third one (beet dimension) again
(see Figure 4.5), and cutting in the mean of g in the cell I; with support

[16, 20], we obtain the new partition with the three cells:

I = [2,3] x [2.4,3.6] x [16, 18],
I = [2,3] x [2.4,3.6] x [18,20],
I = [2,3] x [2.4,3.6] x 20, 24].
After this we have to solve the upper (5-5) and lower (5-9) bound

problem, respectively, to get an accurate aproximation of the true problem
(2-24).

At the next stage we have to choose the optimal cell to refine the actual
partition {I, I, I3}. Solving (4-3), we find this time that the cell where the
difference between the lower and upper aproximation of the expected value
of the recourse action is bigger, is the cell I} = [2,3] x [2.4,3.6] x [16, 18],
represented by the shaded region in the Figure 4.6.

24
22

20

18

16 =

3.5

25

Figure 4.6: Choose of the cell I} = [2,3] x [2.4,3.6] x [16, 18], as the optimal
cell.

For the cell I; = [2,3] x [2.4,3.6] x [16,18], the optimal solution of
the problem (4-1) pointed again the third dimension (beet dimension) as the
optimal direction to do the cut. Doing this, the newest partition is composed

by the four cells:
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I = [2,3] x [2.4,3.6] x [16,17],
I, = [2,3] x [2.4,3.6] x [17,18)],
Iy = [2,3] x [2.4,3.6] x [18,20)],
I = [2,3] x [2.4,3.6] x [20, 24].

This sequencial problems are solved until reach a tolerance level for
the difference between the lower and upper optimal approximate solutions,

established at the begining as an stop criteria for the algorithm.

In the next figure is presented the partitioning of support for different

iterations of the algorithm (partition size).
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SAWPR for the Farmer’s Problem
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Figure 4.7: Partition of the support with: (a) 4 cells

(d) 300 cells, (e) 500 cells, (f) 900 cells.
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Case Study

5.1
Bounding the Uncertainty
We clarify that we consider problems with complete recourse like the

Farmer’s problem, for which the following treatment is valid.

We saw that discretizing the expected value operator we can obtain
bounds for the optimal solution of the true problem. One bound is obtained
considering the weighted sum of the worst values of Q(z,€&) for the case of
minimizing problem, and the other one is obtained considering the weighted

sum of Q(z,§) evaluated in the center of each cell.

The aim is verifing the convergence of the partition-based method con-

sidering the first conditional moment.

According to this, the true problem (2-24) can be write as:

Min c'e+ ) EeQ(z,€)[¢ € Il P(E € L)
k=1

(5-1)
st. xeX.

Additionally, we assume for simplicity that {&{r,&w, &} is a set of

independent random variables with uniform distribution, such that & ~

U(&,&]), for all i € {T, M, B}. Therefore the probability of the random

variable £ belongs to cell I, is given by:

P(€ € 1) = Pler € [ &) -Plew < 6. €7D -Ples € 57, €57,

where

P& el = Pl <) - P <6"7)
glbt) _ glho)

-6
for all i € {T, M, B}.
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5.2
Upper Bound

We have that

Min cdr+ ZEg[Q(l’aﬁ)’f € Ii]P(§ € Ir) <

k=1
st. zeX.

. t .
Mxm cx—k;%%ﬁ@(%@ P(§ € Ii)

st. zeX.

So, the upper bound for the optimal solution of Farmer’s problem is given

by:

Min 15027 + 2302y + 260z + Y max Q(x,£) - P(¢ € I;)
x —1 Eely

(5-2)
st. xr+xym+ e <500,

T, Tprr, TB 2 O,

where Q(z, &), is defined as in (2-25).

We know that

Max Q(z,§) = Max)Q(:v, £)

Eely, ECE(I},
= max{Q(z,§")|s € {—,+}"},

where £%2) is the value of £ on the vertex s of the cell k, and z is fixed.

To clarify the notation, {—, +}? it denotes the set of coordenates for the

vertex of cell k, that are formed by the intervals ends of each dimension.

{_7+}3 = {_>+} X {_>+} X {_7+} = (_7+7 _)7 (_7 _7+)7 (+7 _7+)7 >

thus, for example, if s = (—, —, +), then {**) = (§(Tk’_),§](\§’_),§g€’+)).
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Retaking the above, (3-29) can be expressed by the following linear
programming problem:
Min 9k
o (5-3)
st O > Qx, &%) Vs e {— +),

where

Q(x, 79y = Min 238y + 210y — 170w — 150wy” — 36w — 10wl
Yy, w

st &g 4y ) > 900,

& e+ —wiy? > 240,

&g wp — i —wy? 20,
—w® > 6000,

y(Tk’S),yg}’S) >0, wgf,S)’w](\l/c[,s)’wgfl,s)’wgzs) >0, with s € {_’ +}3'

Let 0; be the optimal value of the problem (5-3), so:

0 = Q(z, ")) = max{Q(z,€™)[s € {— +}°},

where s* denote the vertex on which the worst value of Q(x,&) inside
the cell £ is.

Attending this, (5-3) is equivalent to the following problem:

Min Ok

0,y,w

st 6 > 238y0" + 21095 — 170w — 150w ;Y — 36wl — 10wl Vs € {—, +}?,

& Ver + oy —wp? 22000 Vs € {— 4,
& ear ) — w2240 Vs € {—, 4},
& s —wy” w20 ¥se{— 4},
—wi? > 6000 Vs € {—,+},

ey 20, w? wiY e wi >0 Vs e {4}
(5-4)

For an explanation more detailed about this fact see Indeed A.6

By other hand, is fact that each coordenate 0} of 0* = (6;)}_,, that is
the minimizer for the average > ;_, 0 - P(§ € 1), is the optimal value of the
problem (5-4), for all k =1,...,n (see A.7).
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Considering the above arguments, the problem (5-2) is equivalent to the

following linear programing problem:

Min 15027 + 23024, + 260z + Z Oy, - P(€ € [€7), ¢®))

z,yw,0 k=1
s.t. — (xr + 2y +25) > —500,

O > 238y 4 210y

8 pr 4y — Wl > 200 Vs € {—, +}7,

f](\is)xM + y& s) _ (k’s) > 240 Vs € {—, +}

f(k 5) wgcls) (k >0 Vse [~ 4,

- w(’“ > —6000 vs e {— +}°,

WD > 0, b wb w0 0 >0 Vs € (o, 4

rr, Ty, Tp 2> 0,
(5-5)
which optimal value represents the upper bound of the theoretical value

for the Farmer’s problem.

5.3
Lower Bound

We saw that Q(z,§) defined as in (2-25), is a convex function. On other
hand, by Jensen inequality (see A.4), we have that

ElQ(z,8)I§ € I] < Q(z,E[¢|¢ € I]) VE, (5-6)

SO

Min dr 4+ Qx, B[ € I]) - P(§ € I) <
k=1 o

st. xeX.

Min c'z+ D EQ(x,9)I¢ € LIP(¢ € 1)

k=1
st. zeX.

In that sense, the lower bound for the true problem (2-24) is given by

the following linear programming problem:

— 170w — 150wl — 36wh — 10wl Vs € {—, +}%,
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Min 15027 + 230z + 26025 + Y Q(x, E[[¢ € IL]) - P(€ € 1)
= (5-7)
st. xr+xym+ xp <500,
xr, Ty, > 0,

where

Q(z, B[S € Ii]) =
Min 238y5 + 210y — 170wl — 150w — 36wl — 10w
Yy, w

s. t. (Tk)x + ygp) (k) > 200,
E\Z)x + y(T) — w](w) > 240,
EYap +wly) —wh) >0,
—wl) > —6000

(5-8)
Again, under the same arguments, it is possible to solve at the same time

the first and the second stage problem, and therefore (5-7) is equivalen to :

15027 + 2302, + 260xB+
Min {238y< + 2105 — 1700
k_

z7y)w

— 150wy — 36w — 10wy
st. xr+xym+ xp < 5H00,
Ty, Ty, g > 0,
W rr + oy —wl >200 VE=1,...n, (5-9)
J(\Z)x —l—y(k) wg\];)2240 VE=1,...,n
gc)xB—wggl)—wg?ZO Vk=1,...,n
wh) <6000 VE=1,...,n
Wy >0 k=1, n

w(k) w](w),wg?,wgf) >0 Vk=1,...,n
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Computational Results

6.1
SAA for the Farmer’s Problem

Here are presented the obtained results after running the model (2-26),
increasing sufficiently the scenarios number to verify the convergence of the
SAA method. The error was estimated by the variance of the solution with

100 replications of the problem at each iteration.

-60000

-80000

-100000 —F—<——

________

Cost

-120000 — — -7 S
L ]

-140000 +——

-160000

-180000

- o =2 ©° o © o 8 S8 © © o °o o o 8 9 ° °o ° ©
—!de‘m\ahmc\ccggggggggg
-
™ - N <+ ©° ® =
Scenarios Number
¢ Mean —-==Mean + o —— Theoretical Value

Figure 6.1: SAA estimator for the Framer’s Problem

Observing the Figure 6.1 it can be seen that there exist an inverse
relation between the scenarios number and the error. The dispersion vanishes

when the sample size is sufficiently big to get an accurate approximate solution.

However the computational cost to run the large linear programming
problem (2-26) 100 times with a big scenarios number, is very high; that fact
leads us to think about if the desired accuracy for a more complex problem

with other kind of uncertain data could be unachievable.

Moreover we can verify that the SAA estimator is downwards biased for

the cost minimization problem, and that bias decrease monotonically when the
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number of scenarios increases. So, in that sense, a conservatism solution would

be E[J%] + 6 (z*), where 62(z*) denoted the sample variance.
6.2
Numerical Results from the SARPR

The models (5-5) and (5-9) were run, and we obtained the following

results:

Partition Size! Upper Bound Lower Bound

1 -99950.00 -118600.00
20 -70069.31 -114632.50
40 -72496.29 -114480.63
60 -73256.68 -114477.81
80 -73478.08 -113474.69
100 -73822.43 -113471.87
200 -87649.93 -113466.25
400 -90236.27 -113434.74
600 -90767.71 -112636.99
800 -93228.96 -112258.07

1000 -93777.27 -112255.73
2000 -94814.96 -112019.48
4000 -96950.18 -111876.00
6000 -97642.41 -111608.13
8000 -98296.21 -111538.18
10000 -98687.31 -111522.92
15000 -100048.17 -111511.24

Table 6.1: Numerical results.

This data are represented in the Figure 6.2. It can be appreciated the

convergence of the partition-based method and the accuracy of its solution.

The Figure 6.3 shows the percentual error. The gray area corresponds
to percentage of the true solution that was reached by the partition-based

method, and the darker one corresponds to the error.

Comparing both bounds (see Figure 6.4), we note that their convergence

velocity is different.

If we analyzed the formulation of bounding problem for the minimization
case, it is clear that the conservatism level for the upper bound problem

(robustness of the recourse action) is higher than the mean scenario one. In
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that sense it is expected that the upper bound converges slower than lower

one.
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Figure 6.2: Upper and lower bounds estimation.
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Figure 6.3: Error graph.

It is worth mentioning that the computational cost to estimate the upper
bound, was higher than the computational cost to estimate the lower one, and
this last was quite similar to the computational cost demanded by the SAA
estimatior. This is reasonable since the linear programming problem (5-9) is
equivalent to (2-26) considering the “mean scenarios” (centers of the cells) as

sample and {P(¢ € Ij)}}_, as discrete probability distribution.
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Figure 6.4: Comparison of upper and lower bound convergence.

Even though the computational cost of the partition-based method higher
than SAA estimator one, this alternative technique is desirable for two-stage
stochastic programming problems with convex and complete recourse function,
since this method gives a deterministic estimation of the true solution and
allows to get a more accurate approximation, increasing the information about
the unknown data (increasing the partition size) to adjust the conservatism

level of the model.
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6.3
Numerical Results from the SAWPR

The obtained results from SAWPR algorithm are presented below:

Partition Size? Upper Bound Lower Bound

2 -78400,00429  -113554,5650
10 -91000,00485 -113065,7551
20 -95250,02819  -113065,6612
30 -97256,25214  -111753,9764
40 -98100,00023  -111753,9840
50 -99295,31262  -111641,4684
60 -99663,88845 -111632,3311
70 -100060,2431  -111632,3309
80 -100429,1654 -111632,3308
90 -100834,9826  -111632,3297
100 -101019,4443  -111632,2889
200 -103062,4998  -111516,1072
300 -104317,4107 -111396,4226
400 -105094,8800  -111396,4498
200 -105636,1365 -111396,4487
600 -105896,3662  -111396,4488
700 -106151,8539  -111396,4504
800 -106417,3859  -111396,4498
900 -106542,9439  -111396,4291

Table 6.2: Numerical results.

This data are graphicaly represented in the next figures where the
convergence of both techniques (the SARPR and SAWPR algorithm) are

compared.
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Figure 6.5: Bounding from SAWPR Algorithm.

Observing the figure above is clear that SAWPR algorithm converges for
a significantly smaller partition size than SARPR algorithm.
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Figure 6.6: Estimation error.

The Figure 6.6 shows that the approximation error for SAWPR algorithm
is less than the random method error for each partition size, which proves its

numerical accuracy.
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Final remarks

— The SAA (Sample Average Approximation) is a useful method but has

disadvantages, like: requires a big scenarios set to converge, which affects
its computational efficiency; Its optimal solution depends on the sample,

and that for that reason it is a random variable also.

The partition-based method is convergent. Theoretically we can prove
that if the recourse function is continuous and the uncertain variable
has compact support, then the approximate solution converges to the

optimal solution of the true problem.

The performance-output of the partition-based method gives a deter-

ministic estimation for the optimal solution of the true problem.

The SAWPR algorithm shows that with robust optimization techniques
it is possible to find a better way to partition the support of the uncer-
tain variable to reach the optimal solution with a smaller partition size,

and improve the computational efficiency.

The computational results show that both bounds convergence at dif-
ferent velocities. The lower bound is less conservative than the upper
one, but increases the information about the distribution of the uncer-
tain variable (increasing the partition size), the robustness of the model

adjust the conservatism level for the upper optimal solution.
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Future Works

— Improve the SAWPR algorithm by conssidering another way to choose
the cutting point.

— Speed up the convergence of the refinement sequential problem, analyz-
ing valid restrictions, i.e., identifying analytically the optimal solution

for the worst-case problem.

— Consider the case ¢ := ¢, when the recourse function is concave and the

worst-case problem

Max Q(z, §)

g€l
could be solved by the Benders’ cut method or column-and-constraint

generation method, for example.

— Test the partition-based method for more instances in order to identify

the class of problems for which the method works.

— Compare the partition-based method with improved versions of the

Sample Average Approximation method.

— Extend the partition-based method to multi-stage stochastic program-

ming case.
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A
Mathematical and Statistical Background

A.l
The Weak Law of Large Numbers

Let X3, X, ... be a sequence of independent and identically distributed
random variables with mean p and finite variance 0. Then, for any € > 0, we
have that

X 4+ X, 2
PP )=
n ne

from which we obtain that for any ¢ > 0:

X, 4+ +X,
limP( (S —u >e>=0.
n—->00 n
Proof . Let X, := 213=tXu pe the arithmetic mean of the first n random

variables. Clearly E[X,] = p and Var(X,) = % Chebyschev’s inequality

implies that for any € > 0 we must have:

P(X, ~ B[%,] 2 0 s 75,

wich is exactly what we wanted to prove. [

Note that

lim P

n—aoo

(‘X1+-~+Xn
—H
n

>e>:(),

lim P(X1+"'+X”:u) =1
n

is equivalent to

n——oo

A.2
The Central Limit Theorem

(Univariate Case) Let Xj, Xs,... be a sequence of independent and
indentically distributed random variables with mean p and finite variance o.
Let S, := 2?;1 X, and Y, = Sg;\/%“ Then, the sequence of random variables
Y1, Ys, ... converges in distribution to a random variable Y having a standard

normal distribution. In others words:
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) Sp —np B

Proof. Whithout loss of generality, it will be assumed that = 0. Let ¢ be the
characteristic function of the random wvariables X1, Xs, ... Since the random

variables are independent and identically distributed, we have that:

¢y, = Elexp(itY,)]

FExpansion of ¢ in a Taylor series about zero yields:

o(t) =E[e"”]

0. CEERTAD. €
:E[1+z’tX— + ! —}

2 6
o?t?
+14+0-— +120,(t).

Thus:

oy, (t) = [1 -7 (ﬁ) " (;7)201;@)
~exp [nln (1 _ %2 (Ut—\/ﬁ)Q N (#)2 Op(t)>

Taking the limit when n — oo we get:

n—aoo 2

lim ¢y, (t) = exp l—t—] :

The Lévy-Cramer continuity theorem implies that

Y, -4y,

n—o0

where Y 1is a random variable having a standard normal distribution. [
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(Multivariate Case) The central limit theorem can be generalized to

sequences of random vectors as follows:

Let X1, X5, ... be sequence of d-dimensional independent and identically
distributed random vectors (X; € R? Vj), having mean vector p and variance-
covariance matrix Y, where X is positive definite. Let

o X1+ Xo+-+ X,
X, = 1+ Xo+ +

n

be the vector of arithmetic means. Then

\/ﬁ(yn — ) 4 X,

n—oo
where X is a d-dimensional random vector having a multivariate normal

distribution with mean 0 and variance-covariance matrix 2.

A.3
Continuity of Convex Functions

Let U C R" be a open and convex set. Every convex function f : U — R

1S continuous.

The proof of this fact is supported on the next two propositions

Proposition A.3.1. Every point of the rectangular bloc B = [];_,[ai, bi], is a

convex combination of its vertexs.

Proof. (By induction) Clearly the result holds for n = 1. Let n > 1. The
block’s vertexs are the 2" elements of the set [\ ,{ai, b;}. An arbitrary point of
the block can be write as p = (x,y), wherey € |an, b,| and x belongs to the block
B = H?;ll lai, b;], of n — 1 dimension. By induction hypothesis, v = > a;u;
is a convex combination of the vertexs u; € B'. The vextexr of B are of the
form v; = (u;,a;) and v; = (u;,b,). Putting py = (z,a,) and p1 = (x,b,), we
have that po = > ajv; and p1 = Y a;v;. Moreover, y = (1 — t)a,, + tb,, with
t ==, sop=(1—t)po+itp1 =3 (1 —t)ayv; + > ta;v;, which express the
arbitrary point p of the block B as a conver combination of its verters. [

Proposition A.3.2. Fvery convex function f : U — R, difined on a open

and convex set U C R", is locally increased by a constant.

Proof. Let A =[], (a;,b;) the interior of the rectangular block contents in
U.Ifw;, j=1,...,2", denote the vertexs of A we have, for any x € A, that
r = Y ojw; then, by the convexity of f, f(z) < > oy - f(w;) < M, where
M = maz{f(w;)}. O
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Proof. (Continuity of Convex Functions) To simplify the notation, to
proof the continuity of the function f at arbitrary point a € U, we can assume
thata = 0 and f(0) = 0, since the set Uy = {x € R"|a—z € U} is conver, open,
contents 0 and the function g : Uy — R, difined by g(z) = f(a — x) — f(a),
satifies g(0) = 0, is conver and continuous at point O if, and only if, [ is
continuous at point a. By Proposition A.3.2 |, there is ¢ > 0 and M > 0
such that |x| < ¢ = f(x) < M. Let € > 0 be given, without loss of generality
we can assume that e < M. By the convezity of f we have that

Fs7e) = F((1=77) -0+ 7o) < - f(@),

S0

Taking 6 = 17, we get

€c M
<— ==
ol < 57 = [

<c:>f<¥x)§]\/[:>f(x)§e.

Moreover,

=101 (see s ()

M € M
Smf<$>+M+ef(—?f)'

Simplifying, we have that M - f(z) +€- f(—Mzx/e) >0, so:

€

fla) >

Thus, |z| < ce/M = —e < f(z) < €, and therefore f is continuous at
point 0. [

(~f(=Ma/d) > = (~M) = ¢
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A4
Jensen’s Inequality

Let ¢ : R — R be a convex function. If X is a random variable and
integrable, i.e. E[X]| < oo, then

Elp(X)] = o(E[X]).

o) A

@ (xp)

|

Figure A.1: Convex function.

Proof. Given xy and the point p(xzo) in the graph G = {(z,¢(x))|x € R} C
R?, by convezity, there is a line L that crosses by the point (xg, o(xo)) and
satisfies p(x) > L(x), Vo € R.

Let y — p(x9) = Mz — o) the equation for the line L for some A € R. So

o(x) = L(z) = plao) + A — z0),  Va.

Therefore,

Elp(X)] = E[L(X)] = @(z0) + A(E[X] — ).

Putting o = E[X], we get Elp(X)] > ¢(E[X]). O
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A4.1
Jensen’s Inequality for Conditional Expectation

Let ¢ : R — R be a convex function. Then for any X, such that
Elp(X)] < oo,

Elp(X)|¥9] > o(E[X|¥4]) almost surely (a.s.)

Proof. Define £ := {(a,b) € R?|p(x) > ax + b, Vx € R}. By convexity
£ # 0, and also is open in the topology of R2. In particular, £ N Q? is dense
in 2. Then

e(x)= sup (ax+0b), zeR
(a,b)eLNQ2

Since p(X) > aX + b, for each (a,b) € £, and since p(X) and X are

integrables, we have that

Elp(X)|¥9] > aE[X|9] +b a.s.

If Qup denote the event where the inequality holds, then P(Q,;,) =1 for
all (a,b) € Z. Define Q' := (|, pcgng Lap, and note that P(SY') = 1. Taking
the supremum over (a,b) € £ NQ?, we have that

Elp(X)1¥] > »(E[X|¥9]), on(Y.

U

A.5
The Total Probability Law

Let {I;}7_; be a partition of £ distribution function support. Since £ € =
and (J;_, Iy = E, for any z, it holds the following':

B =1
=E | Q(z,§) ( X, (§) — ZX NIy (5))] :

1y a(x), denote the characteristic function, defined by

1, z€A

XA(IE)_{ 0, z¢ A
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This last since

5) :fok(f) _ZX N 1, (€>7

ko1 k=1 E>1  1Si<-<igsn

SO

E>1 1Si1<-<ig<n
=0

A\
7 Y

Q.Y X nu, <£>]

E>1  1Si1<-<ig<n

=K Q(maf) lek(f) -

k=1

3

= > B0 O (@) = 3 S P e e 1,

2and by deffinition,

ElQ(z, Oxn ()] _ E[Q(x, )¢ € I4],

P(§ € I)
thus,
E[Q(z,6)] = > E[Q(x,6)[¢ € L]P(E € ). (A-1)

A.6
Large Linear Programming Problem for the Upper Bound

If (05, y*,w*) is the optimal solution for (5-4), and if we suposse that
there is s’ € {—,+}?, such that Q(z, %)) > 0}, then

( (ks) y*( s') _ w;(k,s’) Z 2007

T+ Yr
e +yp) —wi > 240,
e85 ep —wi) — Wil > o,
—wi®" > —6000,

*(k,s’ *(k,s’ ks’ *(k,s’ *(k,s’ k,s’
L™ o 20, wi ™y wit wgt) > o,

and

E(Q(,8) > 1-1X N I, (5)] =0, since P (f e N, ) =0foral k>1

1<ig < <ip<n 1<i1<---<ig<n
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Q(x, €5y > 23842 ™) 121093 170w ™) 150w —36wi ) — 10w,

contradicting the minimality of Q(z, £%*)).

By other hand, if we suposse that there is s € {—, +}?, such that

0 = 238y5 ") + 21030 — 170w — 150w} — 36w — 10w
> Q(x, "),

then by existence and optimality of Q(z, %)), there is (ékg],u?), such
that

(%D 4+ ) — @) > 200,
8+ 0 — ) > 240,
€ — o)~ a5 >0
— @) > ~6000,
\ ~§ﬂk,s’)) gg\lj[,s’) 2 0, ~§{c,s’)’w§\lz,s’)7 ~g<:1s’)7 ~(ks) > 0

and

= 288" + 2105 — 1700 — 1500 — 3655 — 100"
= Q(x, 6.

Therefore 0} > 0, contradicting the optimality of 0.

A7
Average Optimizer

Put

s.t. O, € @k,

where O denote the set of restrictions for the problem (5-4), and

= Argmin Z@k (& € Iy)

k=1

s.t. 0, € O, VEk,

then ék € @k, thus
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3
3

If we suposse that there is &’ such that Hk/ > 0},, then we can replace Qk/

by 65, and get the vector (01, O 1,9k,,0k/+1,...,6’ ), 8O

3

X
I

—

ey
>

P el,) > P(écly)+6;  -PEely)+ Zek (€ € I),

k=1 k=k'+1

B
Il
—

contradicting the optimality of 6 = (6),)7_,.

A.8
Edmundson-Madansky Inequality

Let ext= be the set of extreme points of the convex hull of =, and £ the

sigma algebra of all subsets of ext=.

Suposse that £ — Q(z,§) is convex and Z is compact. For all £ € = let
®(&, ) be a probability measure on (ext=, &), such that

| eoteao—¢ (4-2)
ecext=
and w — ¢(&(w), A) is measurable for all A € £. Then

BQM.)< [ Qe (A-3)

where \ is the probability measure on £ defined by

/ G ). (A-4)

Proof. Since w— Q(z,&(w)) is convez, and

£= e-¢(§ de) VEe€E,

ecext=

is a conver combination of extreme points, it holds

Q.= Qe [ e-ole.de)
<[ oo
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so integrating with respect to probability measure P, we have
B9 = | Qéw)P()
we
<[ [ Qoo dp)
weN Je€extE
- [ Qe [ etew).dp)
ecext= \wGQ .

)\(‘c?e)

The compatibility relation between the probability measure A\ and the
distribution of £ (see 3.2), allows to indentify the set where we can find the
optimal measure A\ that satisfies the conditions of the Edmundson-Madansky

inequality, since

A € {p| pis a probability measure on £, and E,,[e] = £}.
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